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Abstract. The partitioning, uniqueness and form of field energy stored in matter, and its properties as a
state function, is established. Consequently, the first and second laws apply to the nonfield and field parts of
the internal energy as separate entities. This provides a bridge between thermodynamics and the classical
theory of electromagnetism. Presentation of the temperature as the sum of nonfield and field contributions
is used to establish field dependent barriers to temperature decrease toward the absolute zero, and the
existence of field induced temperature jumps. These temperature jumps appear at the instant the field is
switched on, or turned off. The partitioning of field and nonfield energies is illustrated for a specific case of
an ideal gas, and the heat absorbed by the field is derived in terms of difference in adiabatic magnetization.
Finally, the current, restrictive, form of electromagnetic field energy density is redefined with respect to
the effect of field energy stored outside the system boundaries.

PACS. 05.70.-a Thermodynamics – 05.70.Ce Thermodynamic functions and equations of state –
05.90.+m Other topics in statistical physics, thermodynamics, and nonlinear dynamical systems

The establishment of electromagnetic field energy, stored
in matter, as internal energy and a state function, which
is partitioned from its nonfield counterpart, is of funda-
mental consequence regarding polarizable and nonuniform
systems. Once the form of this energy is determined, then
its thermodynamic and related electromagnetic properties
are known. The partitioning between nonfield and field
components, of the internal energy, warrants the applica-
tion of the first and second law to each one of them as
separate entities, with unique contributions to thermody-
namic and field variables characterizing the system (see
Appendix A). The process of energy storage in polariz-
able matter can be treated in the context of thermody-
namics in the presence of fields [1–3]. Nevertheless, the
effect of field induced changes in temperature, and the ex-
act form of the stored field energy, are not yet known. For
example, in adiabatic magnetization, a long standing fun-
damental problem relates to the effect of a field induced
change in temperature on the polarizability and field en-
ergy of the system. The question is whether the stored
energy is path dependent. This work sets to bridge the
gap between the classic theories of thermodynamics and
electromagnetism, by establishing the form, uniqueness,
and fundamental consequences of field energy stored in
matter.

Uniqueness of field energy: the sources of electric, mag-
netic, and gravitational fields are charges, currents, and
masses, respectively. If all charges, currents and masses
are specified in space and time, then fields produced by
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their presence [4] are readily shown to be unique. This is
true irrespective of the process, whereby these field gener-
ating entities reach their final positions in space and time,
and the systems to which they are assigned, e.g., being
part of polarizable matter or an independent source. Con-
sequently, there exist, for each field, a function that is
determined by the state of the field, e.g., as uniquely ex-
pressed by the value of the field variables. This means that
in the presence of fields, the internal energy of a system
comprises nonfield and field energies that are both state
functions.

Uniform magnetic fields: in what follows, we consider
conservative, lossless systems that do not include hystere-
sis, generation of heat, or permanent magnetization. The
quasistatic work We delivered by a current source of a
quasistatic magnetic field, is given by,

We =
∫

λ

idλ =
∫

V ′

∫ B

0

H · dBδV, B = µH (1)

where H, B, δV , V ′, i, λ, and µ denote field strength,
magnetic induction, infinitesimal volume element, space
occupied by the field, current, flux linked by i, and per-
meability, respectively. In general, V ′ stands for all space
and µ is a function of temperature, density and the field,
or alternatively of the fundamental set (defined later): en-
tropy, volume, mass and the field B. It follows that the
effect of temperature on We is through the permeability
of the matter being magnetized. If, as a special case, the
field is uniform and confined to a fixed volume V (for ex-
ample a thin gap between the poles of a yoke magnet,
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where H = 0 except for the gap) then,

dWe = V H · dB, We = V

∫ B

0

H · dB. (2)

Note that if We is delivered subject to the constraint that
no heat transfer across the system boundaries or their dis-
placement is allowed, then by virtue of the first law, We

is transformed (see Appendix A) into energy that can be
stored and retrieved exclusively by field interactions. In
this respect, this energy can be defined as field energy.
However, if the above constraints are not satisfied, as is
the case with lossy and electromechanical systems, the
work We produces energy forms that are different than
the one stored by the field.

As equation (1) depends exclusively on field variables,
which are integrated over all space, it holds irrespec-
tive of the distribution of matter, and the corresponding
permeability, in the integration space. This includes the
phenomenon of magnetostriction and the change of den-
sity due to expansion of matter as the field is changed.
In this context and as discussed in the sequel, integra-
tion of H · d(B/ρ) (defined as magnetic work per unit
mass [1,5,6]) over a mass that is the source of a field
outside its own boundaries, does not account for its en-
ergy which is stored over all space. Consequently, as
this integration does not always agree with equation (1),
H · d(B/ρ) cannot be defined, e.g. in a general sense, as
the magnetic work per unit mass. The proof is straightfor-
ward. Integration of

∫ B

0
H · d(B/ρ) over the mass m gives∫

m

∫B

0
H · d(B/ρ)dm. This equation must hold at fixed ρ,

so that integration over a fixed mass, with dm = ρdV ,
gives

∫
V

∫
H ·dBdV . This result differs from equation (1).

Here the integration volume is V = ρm, whereas in
equation (1), it is all space V ′. It follows that the term
H · d(B/ρ) does not fulfill the requirement from a mag-
netic work term per unit mass.

An example of how dWe produces terms of field energy
storage, electromechanical work and heat, in the context
of the first law, is given in Appendix B.

In the presence of the field the temperature [5], de-
noted by T̂ , is related to that in its absence T = T̂ (B =
0) by,

T̂ =

(
∂Û

∂S

)
V,N,B

= T +
(

∂UM

∂S

)
V,N,B

,

T =
(

∂U

∂S

)
V,N

(3)

Û = Û(S, V, N,B) = U + UM

U = Û(S, V, N,B = 0) = U(S, V, N),
UM = UM (S, V, N,B) (4)

where Û , UM , U , S, V , and N denote internal energy
in the presence of the field, energy stored in the magnetic
field, nonfield internal energy, nonfield entropy (see its def-
inition below), volume, and mass, respectively. Details on
definition of independent variables and related energies

are given in Appendix A. Note that establishing UM as
a state function facilitates the application of the first and
second law to the stored field energy, see Appendix A.

Equations (3, 4) can be derived as follows: in the ab-
sence of fields, the internal energy U of a homogeneous
and uniform system is a function of S, V and N . As both
U and S are defined in the absence of fields, they are non-
field variables. At fixed S, V , and N , U is invariable as the
field B is increased quasistatically from B = 0 to a finite
final value. Furthermore, the imposition of fixed S, V and
N means that the increase in B is done adiabatically (i.e.
in the sense that only electromagnetic power and no heat
flows across the system boundaries) with no mechanical
interactions between the system (kept at fixed shape) and
its surroundings. Under these conditions and by virtue of
the first law, the work done in magnetizing the system is
stored as an additional internal energy UM

UM =
∫

V ′

∫ B

0

H · dBdV, fixed S, V, N (5)

where the condition of fixed S, V , N imposes a single
unique integration path of B. At the final level of B, the
internal energy of the system, being denoted by Û , is

Û = U + UM . (6)

Note that as both U and UM are state functions, they
can be evaluated also along other paths. However, such
alternative paths may be more complicated.

The value of UM depends on the levels of S, V , N at
which equation (5) is evaluated. This reflects the depen-
dence of UM on the permeability, which is a function of
the temperature T = T (S, V, N), density ρ = N/V and B.
This gives µ = µ(T, ρ,B) = µ(S, V, N,B). Consequently
UM is a function of the set S, V , N , B, which comprises
four independent variables. It follows that similar to the
presentation of dU(S, V, N) as

dU = TdS − pdV + ζdN (7)

the functional dependence of dUM , on the set S, V , N , B
can be expressed as,

dUM = TMdS − pMdV + ζMdN +
(

∂UM

∂B

)
S,V,N

dB.

(8)

Differentiation of equation (6) in conjunction with equa-
tions (7, 8), and using (∂UM/∂B)S,V,NdB =

∫
V ′ H·dBdV ,

gives

dÛ = T̂dS − p̂dV + ζ̂dN +
∫

V ′
H · dBdV (9)

where T̂ = T + TM , p̂ = p + pM , ζ̂ = ζ + ζM are tempera-
ture, pressure and chemical potential, which are functions
of the set S, V , N , B. The volume differential, dV , is used
in two different ways: as change in the system’s volume in
p̂dV , and as an integration variable in the integral term
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of equations (9, 5). Note that T , p and ζ and TM , pM and
ζM (see their definitions in Eqs. (11, 12)) are the non-
field and field components of T̂ , p̂ and ζ̂, and in this work
“fixed V ” means that the volume is fixed with respect to
both size and shape. The question, what is the magnetic
work term, can now be resolved by analysis of equation (8)
in the context of the first law, see Appendix A for proof
of applicability of the first law to U , UM and Û .

Similar to the definition of the heat differential as
dQ = TdS in the absence of fields, the magnetic heat
differential is defined as dQM = TMdS. The next three
terms in equation (8), which are not associated with the
change of S, are readily identified as work terms. Hence
their sum is the long sought magnetic work term. It follows
that

dUM = dQM + dWM (10)
dQM = TMdS (11)

dWM = −pMdV + ζMdN +
∫

V ′
H · dBdV (12)

where

TM =
(

∂UM

∂S

)
V,N,B

,

−pM =
(

∂UM

∂V

)
S,N,B

,

ζM =
(

∂UM

∂N

)
S,V,B

,

and dB is constrained to a path of fixed S, V , N . Recall
that UM is a state function, so that other paths for evalu-
ation of dQM and dWM are equally valid. However, they
may be more complicated.

Equations (3, 4) are a direct consequence of equa-
tions (6–9), and the definition given for TM in equa-
tion (11).

Equation (12) shows that the general magnetic work
term consists of three terms. Consequently, the use of the
third integral term, as the complete magnetic work term
(as often encountered in literature) is justified only at fixed
S, V , and N . Otherwise the effect of the other two terms
must be accounted for. Note that if the integral term is
evaluated only at variable S, V , and N , then dB can be
expanded in terms of these three variables, in contrast to
the declared independence of all variables in the set S, V ,
N and B.

A fundamental problem is to determine UM . By virtue
of the first law, and excluding nonfield interactions, UM

can be evaluated as the adiabatic magnetization work.
Therefore, the problem is how to calculate this work. Be-
ing a state function UM can be evaluated along any path
that leads to the state defined by the set {S, V, N, B}. As
this set consists of four independent variables, an adiabatic
path at fixed S, V , N , that sets U fixed, is selected to this
end. This path, being free from the effect of changes in
nonfield variables on the magnetization process, involves
an adiabatic field induced change in TM , which translates

to a change in the temperature T̂ . The question is, if the
effect of this change on the permeability, and in turn on
UM , is significant.

In isothermal magnetization of linear matter at fixed
density, integration of equation (2) (holding the perme-
ability µ fixed) yields We = (1/2)V B2/µ. As UM is
defined in an adiabatic rather than isothermal process
(Eq. (5)), the question is whether We = (1/2)V B2/µ can
be used as a good estimate for UM . The purpose of the
following analysis is to show that for linear matter, the
deviation of UM from We is negligibly small. Assuming
that indeed this is the case, it is beneficial to maintain the
form of We in the analysis of UM .

The permeability (at room temperature) of linear mat-
ter, such as paramagnetic compounds, is a monotonic de-
creasing function of temperature. A well-known example
are materials that follow the Langevin equation

M = Ms[cotha − 1/a],
Ms = Nm, a = µ0m · H0/kT (13)

where M, Ms, N , m, µ0, H0 and k denote magnetiza-
tion, saturation magnetization, number of dipoles per unit
volume, dipole moment, permeability of free space, field
strength, and Boltzmann’s constant, respectively. At room
temperature, a is typically small a � 1, so that in this
limiting case, M reduces to

M =
µ0m

2N

3kT
H. (14)

In this case,

µ = µ0

(
1 +

µ0m
2N

3kT

)
, a � 1. (15)

Equation (15) was derived using the temperature as a
given variable. The question is whether the Boltzmann
statistics holds in the presence of fields was not yet ad-
dressed, and is outside the scope of this work. If it does,
then the temperature must be T̂ , where T̂ = T + TM . If
however, it holds only for the nonfield part of T̂ , then the
use of T is justified. In the latter case, µ is not a function
of TM , so that it is invariable in adiabatic magnetization,
where T is fixed and T̂ changes with B via TM . We shall
consider the implication of the case where T̂ applies in-
stead of T in equation (15). In this case, the susceptibility
can be presented as χ = K(ρ)/T̂ , K(ρ) = µ0m

2N/3k.
As shown in Appendix C, UM of linear matter can be

presented in the same form of We as,

UM =
1
2
V B2/µ(B), (16)

where the dependence of µ on B is exclusively via the
temperature T̂ = T̂ (B), B and µ(B) denote intermediate
values of the field between 0 and B and of the permeability
between µ(B = 0) and µ(B), the field is assumed uniform
within V , and no energy is stored outside V (for example
by enclosing the system with infinitely permeable matter).
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If the permeability is a monotonic decreasing function of
temperature, and the temperature rises in adiabatic mag-
netization of a linearly permeable material, then

1
2
V B2/µ(B = 0) < UM <

1
2
V B2/µ(B). (17)

Hence, holding S, V and N fixed in adiabatic magnetiza-
tion of permeable linear matter, the maximum range of
UM depends on 1/µ(B) − 1/µ(B = 0).

Using µ = µ0(1 + χ), χ = K(ρ)/T̂ gives

1/µ(B) − 1/µ(B = 0) =(
µ0K(ρ)

µ(B)µ(B = 0)

)(
T̂ (B) − T̂ (B = 0)
T̂ (B)T̂ (B = 0)

)
(18)

where K(ρ) is a sole function of density, and use was made
of the fact that at fixed S, V , N , T̂ = T̂ (S, V, N, B) =
T̂ (B), and ρ = N/V is also fixed.

Note that the dependence of χ, and hence, also µ, on
B is through the field dependent temperature T̂ = T̂ (B).

We continue to focus the discussion on linear materials,
which are characterized by fixed permeability in isother-
mal and isodensity magnetization, whose magnetic energy
follows equation (16). Nonlinear matter, such as ferromag-
netic substances are discussed later in a different context.
The susceptibility, χ, of paramagnetic materials is ordinar-
ily less than 10−4. Hence, µ(B) and µ(B = 0) are O(µ0)
so that µ(B) µ(B = 0) = O(µ2

0). Recall that here µ(B)
means µ[T̂ (B)] in adiabatic magnetization and not field
dependent permeability, as is the case with ferromagnetic
materials. In the range of available fields, and as is known
from low temperature physics, the change in temperature
due to a change of the field, from 0 to B, is expected to
be less than 1 K so that at T̂ > 100 K,

T̂ (B) − T̂ (B = 0)
T̂ (B)

is O(10−2) or less.

It follows that 1/µ(B) − 1/µ(B = 0) is O(10−6)/O(µ0),
and the relative change e.g.,

[1/µ(B) − 1/µ(B = 0)]/[1/µ(B)],

is [O(10−6)/O(µ0)]/[1/O(µ0)] = O(10−6).

In the range T̂ > 1 K, the result is O(10−4). This shows
that the effect of change of the field on UM , in adiabatic
magnetization, e.g., via the change in T̂ of permeable lin-
ear matter, can be neglected, provided that T̂ does not
approach the absolute zero. Thus, within this margin of
error, it is justified to use a fixed permeability for evalua-
tion of UM , in adiabatic magnetization.

Hence, assuming that µ is fixed, subject to the neg-
ligible error mentioned above, the field energy and the
temperature are readily obtained as

UM = We =
1
2
V H · B =

1
2
V B2/µ (19)

T̂ = T − 1
2ρ

H2

(
∂µ

∂s

)
V,N,B

, s = S/N, ρ = N/V. (20)

Equations (3, 20) describe the field dependent tempera-
ture T̂ in terms of two parts, the field independent part
T that arises due to nonfield energy, and the part that
exists exclusively due to the presence of the field and its
stored energy. This is in accordance with the partition of Û
into the field and nonfield parts, UM and U , respectively.
If (∂µ/∂s)V,N,B < 0 as expected from paramagnetic ma-
terials (such as permeable ideal monatomic gases), then
T̂ ≥ T̂ (B = 0) = T .

Monoatomic gases that follow the Langevin equa-
tion provide a simple example of the properties of
(∂µ/∂s)V,N,B. In this case [5], (∂s/∂T )V,N,B = 3R/2T .
Hence [5] using

(∂µ/∂s)V,N,B = (∂µ/∂T )V,N,B/(∂s/∂T )V,N,B,

µ = µ0(1+χ), and χ = K(ρ)/T̂ , K(ρ) = (1/3)µ0Ms ·m/k
gives

(∂µ/∂s)V,N,B = −(2µ0K(ρ)/3R)/T̂

= −2(µ − µ0)/(3R) (21)

where, as before, Ms denotes saturation magnetization,
m is the dipole moment of a single molecule and k the
Boltzmann’s constant. Paramagnetic gases are character-
ized by µ− µ0 > 0, so that (∂µ/∂s)V,N,B < 0 holds. Note
that the imposition of a fixed B does not affect the result,
as in this case, V and N can be varied independently of
the field.

The physical meaning of equations (3, 20) can be illus-
trated by an example of heat delivered reversibly, at T̂ , by
a heat reservoir, to the system at fixed V , N , and B. As-
suming the surface that links the flux is fixed in position,
orientation and shape, a fixed B implies that λ is fixed,
so that no energy exchange between the system and the
current sources is allowed. In this case,

dQ̂rev = T̂ dS, fixed V, N,B. (22)

Combining equations (3, 22) gives,

dQ̂rev = T dS +
(

∂UM

∂S

)
V,N,B

dS, fixed V, N,B. (23)

Equation (23) shows that dQ̂rev is divided into nonfield,
dQrev = T dS, and field,

dQM =
(

∂UM

∂S

)
V,N,B

dS = TMdS,

heat flows. The part dQrev is the well-known reversible
nonfield heat flow that prevails in the absence of the field,
and dQM is the reversible heat flow taken up as field en-
ergy. Note that dQM = TMdS is the field counterpart of
dQrev = TdS, and as the latter is reversible so must the
former be.

Removal of the field produces different results, depend-
ing on the constraints set on the system. Isothermal (T̂
constant) decrease in the field strength, changes T at fixed
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T̂ . Heat, T̂dS, flows into the system, and at the end of the
process B = 0, and T̂ = T . Adiabatic decrease in
the field strength, changes T̂ at fixed T . At the end of
the process B = 0, and T̂ = T . Thus, if at the outset (for
B > 0) T̂ > T , then in an isothermal demagnetization
of permeable matter, T increases to the level set by the
heat reservoir, whereas in adiabatic demagnetization, T̂
decreases to the level T , see equation (20), at H = 0. The
adiabatic effect can be obtained, either by insulating the
system, prior to the change in field strength, or by adjust-
ing a fast rate of change of the field at a level that is high
enough to secure a negligible heat flow in the time inter-
val where the field decreases to zero. This fast removal of
the field produces an effect of adiabatic temperature jump
T̂ > T , across the diathermal wall separating the system
from the heat reservoir. This jump becomes the driving
force for subsequent irreversible heat flow, that can last a
prolonged time at B = 0. As T ≥ 0 holds in the absence
as well as in the presence of the field, equations (3, 20)
show that, for permeable matter, the temperature T̂ must
satisfy the following inequalities,

T̂ ≥
(

∂UM

∂S

)
V,N,B

,

T̂ ≥ − 1
2ρ

H2

(
∂µ

∂s

)
V,N,B

for linear permeable matter.

(24)

This sets a barrier for decrease of the temperature of per-
meable matter toward the absolute zero, in the presence
of a magnetic field. Note that the case of polarization by
an electric field, is obtained by replacing the set {µ,H,B}
by the set {ε,E,D}, and the subscript M by Pe, where ε,
E, and D, are electric permitivity, field strength, and dis-
placement, respectively, and Pe denotes polarization.

Thus, the temperature of permeable matter, in the si-
multaneous presence of quasistatic electric and magnetic
fields must satisfy the following relation,

T̂ ≥
(

∂UM

∂S

)
V,N,B

+
(

∂UPe

∂S

)
V,N,D

· (25)

The right-hand-side of equation (25) stands for the barrier
set by the presence of the fields for further decrease of
the temperature toward the absolute zero. This barrier is
defined as the lower limit of the temperature T̂ .

Energy stored in monatomic ideal gas: the internal en-
ergy of a monatomic ideal gas, in the absence of the field,
is given by,

U =
3
2
NRT, B = 0 (26)

where R is the gas constant.
Combining equations (20, 26) gives,

U =
3
2
NR

[
T̂ +

1
2ρ

H2

(
∂µ

∂s

)
ρ,B

]
· (27)

Equation (27) facilitates the evaluation of U (the field
independent part of Û) in terms of the measurable tem-
perature T̂ and field H, prevailing in the system when the
field is on. In this context, recalling that the expression
in brackets is equal to the field independent T , it remains
invariable for B ≥ 0, at fixed S, V and N .

Combining equations (6, 19, 27) gives,

Û =
3
2
NR

[
T̂ +

1
2ρ

H2

(
∂µ

∂s

)
ρ,B

]
+

1
2
V B2/µ,

H = B/µ. (28)

Equation (28) expresses Û , in terms of measurable field
dependent variables, that characterize the system when
the field is on.

Recalling that the monatomic gas is ideal with linear
magnetization, gives

1
2ρ

H2

(
∂µ

∂s

)
ρ,B

= − 1
3ρR

(µ − µ0)H2 = − 1
3ρR

µ0H ·M,

µ0M = (µ − µ0)H. (29)

Equation (29) can be used to estimate levels of TM =
−(1/2ρ)H2(∂µ/∂s)V,N,B, that can be expected from ideal
paramagnetic gases. Substitution of µ−µ0 = µ0χ in equa-
tion (29) gives TM = (3ρR)−1µ0χH2. In order to esti-
mate the order of magnitude expected from TM , we apply
the results obtained for monatomic gases also to oxygen,
which is diatomic. In doing so, we assume that magnetic
effects due to the internal modes of each molecule are
small, compared to those arising from orientation.

For example, the molar susceptibility of oxygen is
given by 0.993/T , being 3 390 × 10−6 at 20 ◦C [6].
The corresponding volume susceptibility is χ = 0.143 ×
10−6 at 760 mm pressure. Using ρ = 1.3536 kg/m3 =
42.3 mole/m3, R = 8.3143 J mole−1 K−1, µ0 = 4π× 10−7,
and field intensity of (5 × 108)/4π Am−1 (equivalent to
50T ) gives TM = 0.270 K. Thus, notwithstanding the use
of an extremely high field intensity, TM < 1 K holds in
this example of oxygen.

The significance of TM increases as the zero ab-
solute temperature is approached. For example, given
dS, dQM/dQrev = TM/T (see the paragraph following
Eq. (23)), and using TM < 1 K, dQM/dQrev is expected
to be small unless the value of T is constrained to be suf-
ficiently close to the absolute zero.

Combining equations (28, 29) gives,

U =
3
2
NRT̂ − 1

2
µ0V H ·M. (30)

Combining equations (6, 19, 30) gives:

Û = U + UM =
3
2
NRT̂ − 1

2
µ0V H · M +

1
2
V H · B

=
3
2
NRT̂ +

1
2
µ0V H2.
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It follows that in isothermal, T̂ = T̂ (B = 0), magnetiza-
tion of an ideal gas,

Û = Û(B = 0) +
1
2
µ0V H2. (31)

Equations (19, 30, 31) show that isothermal magnetiza-
tion changes the nonfield part of the internal energy U by
−(1/2)µ0V H · M, the field energy UM by (1/2)V H · B,
and the internal energy Û by (1/2)µ0V H2.

An example of isothermal compression of an ideal para-
magnetic gas, in a uniform and fixed field, follows.

Isothermal compression of an ideal paramagnetic gas
in a uniform and fixed B field

An ideal paramagnetic gas that follows the Langevin equa-
tion, is compressed isothermally in a uniform and fixed B
field from an initial volume V0 to a final volume V . It is
required to determine:

a. the magnetic heat and work terms of the gas;
b. the change in UM of the gas;
c. the ratio of the magnetic pressure volume work and

heat delivered to the gas holding its mass fixed.

In this case [2,7],

PM = −1
2
H · B− 1

2
H2ρ

(
∂µ

∂ρ

)
S,B

, ρ = N/V (32)

TM = − 1
2ρ

H2

(
∂µ

∂s

)
ρ,B

, s = S/N (33)

ζM = −1
2
H2

(
∂µ

∂ρ

)
S,V,B

· (34)

a. The heat and work terms, dQM and dWM , are given
by equations (11, 12), respectively.

Hence,

dQM = − 1
2ρ

H2

(
∂µ

∂s

)
ρ,B

dS (35)

dWM =

[
1
2
H ·B +

1
2
H2ρ

(
∂µ

∂ρ

)
S,B

]
dV

− 1
2
H2

(
∂µ

∂ρ

)
S,V,B

dN +
∫

V ′
H · dBdV (36)

where the last term on the right-hand-side of equation (36)
vanishes at fixed B.

In this case (T̂ fixed), the susceptibility is a linear func-
tion of density,

µ = µ0 + µ0χ, µ0χ = κρ (37)

where κ = κ(T̂ ) is a sole function of temperature, or al-
ternatively of S

(∂µ/∂ρ)S,B = κ = (µ − µ0)/ρ = µ0 χ/ρ. (38)

Equation (21) reads,

(∂µ/∂s)ρ,B = −2µ0 χ/3R, χ = K(ρ)/T̂ . (39)

Hence,

dQM =
1

3ρR
µ0χH2dS (40)

dWM =
[
1
2
µH2 +

1
2
µ0χH2

]
dV

− 1
2ρ

µ0χH2dN, B fixed. (41)

Note that if the system is open and dN = ρdV holds,
then dWM = (1/2)µH2dV , as expected. In this case, the
size of the system is simply extended at fixed density and
temperature, or else at fixed energy density (1/2)µH2.

b. Equation (10) reads,

dUM = dQM + dWM (42)

where dQM and dWM are given by equations (40, 41)
and H = B/µ, with µ being defined as a function of ρ in
equation (37).

There is no need to evaluate dUM through equa-
tion (8), or equations (11, 12), which can turn rather com-
plex. Instead, we use equation (19) directly, as follows:

UM2 − UM1 =
1
2
B2(V2/µ2 − V1/µ1)

=
1
2

B2

µ1µ2
[µ0(V2 − V1) + κ(V2ρ1 − V1ρ2)]

(43)

where use was made of equation (37).
If N is fixed, then manipulation of equation (43) gives,

UM2 − UM1 =
1
2

B2

µ1
(V2 − V1)

(
µ0

µ2

)
[1 + χ(1 + V1/V2)],

fixed N (44)

where subscripts 1 and 2 denote the initial and final state
of the system. Note that if µ1 = µ2 = µ0, so that χ =
0, the right-hand-side of equation (44) reduces to (V2 −
V1)B2/2µ0, as expected.

c. At fixed N , dWM = −PMdV . In this case, the re-
quired ratio, α, is defined as,

α =
−PMdV

TMdS
=

PMdρ/ρ2

TMds
(45)

where use was made of dV = −V dρ/ρ and dS = Nds at
fixed N .

Combining equations (32, 33, 45) gives

α =
µ/ρ + ∂µ/∂ρ

∂µ/∂s

dρ

ds
· (46)
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Using equations (37, 38), the value of ∂µ/∂s given by
equation (21) and following equation (29), and ∂ρ/∂s =
ρ/R for monatomic ideal gases, in conjunction with equa-
tion (46) gives,

α = 3 + 3/2χ. (47)

Equation (46) shows that large values of α are expected,
e.g. in view of the small values of χ, which are typi-
cal of paramagnetic gases. This shows that the magnetic
pressure volume work dominates by far the corresponding
heat, which is delivered to the gas. This agrees with the
observation that under ambient conditions, the effect as-
sociated with TM is expected to be negligibly small, com-
pared to other effects of the field.

Isothermal compression of an ideal paramagnetic gas
in a uniform and fixed H field

In this case [2,5],

PM = −1
2
H ·B +

1
2
H2ρ

(
∂µ

∂ρ

)
S,H

(48)

TM =
1
2ρ

H2

(
∂µ

∂s

)
ρ,H

(49)

ζM =
1
2
H2

(
∂µ

∂ρ

)
S,V,H

· (50)

a. The heat and work terms take the following forms:

dQM =
1
2ρ

H2

(
∂µ

∂s

)
ρ,H

dS (51)

dWM =

[
1
2
H ·B− 1

2
H2ρ

(
∂µ

∂ρ

)
S,H

]
dV

+
1
2
H2

(
∂µ

∂ρ

)
S,V,H

dN +
∫

V ′
H · dBdV (52)

dQM = − 1
3ρR

µ0χH2dS (53)

dWM =
[
1
2
µH2 − 1

2
µ0χH2

]
dV +

1
2ρ

µ0χH2dN

+
∫

V ′
H · dBdV

=
1
2
µ0H

2dV +
1
2
µ0χH2dN +

∫
V ′

H · dBdV. (54)

b. UM2 − UM1 =
1
2
H2(V2µ2 − V1µ1). (55)

Combining equations (37, 55) gives

UM2 − UM1 =
1
2
H2[µ0(V2 − V1) + κ(V2ρ2 − V1ρ1)]. (56)

At fixed N , V2ρ2−V1ρ1 = 0, and equation (56) reduces to,

UM2 − UM1 =
1
2
µ0(V2 − V1)H2. (57)

Equation (57) shows that the magnetic energy of uni-
formly magnetized ideal gases that follow equation (37)
is a sole function of the volume V , provided that H and
N are held fixed as V is changed. This agrees with the
presentation of UM as, UM = (1/2)µH2V = (1/2)µ0(1 +
κρ)H2V , so that dUM = (1/2)µ0H

2dV , at fixed H and
N , where V dρ + ρdV = 0 holds.

c. α =
µ/ρ − ∂µ/∂ρ

−∂µ/∂s

dρ

ds
= −3/2χ. (58)

Thus at fixed H, the flow of heat is reversed. Moreover, α
changes from 3 + 3/2χ at fixed B to −3/2χ at fixed H.

Formulation of intensive energy storage. The work,
We, equation (1), can be expressed as,

We = We,V + We,V ′−V ,

We,V =
∫

V

∫ B

0

H · dBδV,

We,V ′−V =
∫

V ′−V

∫ B

0

H · dBδV (59)

where We,V , and We,V ′−V , denote the work transformed
into energy stored within (in V ), and outside (in V ′ −V ),
the system, respectively.

Note that We is delivered exclusively to the contents
of the system. This can be realized if one uses the point of
view of the work required to turn all the system’s dipoles
to their final orientation. An observer that evaluates this
work, by recording all the driving forces and their displace-
ments, is bound to conclude that it is done exclusively on
the contents of the system. This conforms with the fact
that the turning process of each and every dipole occurs
within the boundaries of the system, i.e. inside V . The ex-
istence of the field, and the way the field energy is stored,
may be immaterial to this observer. Furthermore, if We is
delivered adiabatically at fixed volume, V , and mass, N ,
then, by virtue of the first law, this observer may safely
conclude that the internal energy of the system increases
exactly by We. Thus, the ability of the contents of the
system to store their field energy over all space does not
change the observation that this energy pertains exclu-
sively to them. The point of view, used by the observer
to evaluate We, can be applied to define work per unit
volume as we = We/V , so that volume integration of we

over V produces the correct result for the work. However,
if H · dB is defined as the work per unit volume, from the
field point of view, then its integration must be done over
all space V ′ and not over V . In this sense, the meaning
of H · dB as work per unit volume cannot be assigned in
general to a system but to all space. Consequently, and as
shown below, the statement that the magnetization work
per unit volume of the system is H · dB can turn to be
meaningless.
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If the field is uniform in a fixed volume V , but nonuni-
form in V ′ − V , then,

dWe = V H · dB + d

(∫
V ′−V

∫ B

0

H · dBδV

)
, fixed V.

(60)

Hence, the work per unit volume, V , delivered to the sys-
tem, takes the following form,

dwe = dWe/V

= H · dB +
1
V

d

(∫
V ′−V

∫ B

0

H · dBδV

)
, fixed V.

(61)

Equations (60, 61) show that unless the field vanishes at
all points of V ′−V , the work delivered and hence also the
energy stored per unit volume, V , of the system, is differ-
ent then H·dB. Alternatively, the statement that the work
per unit volume we is equal to H · dB is generally false.
This stems from the fact that the integration domains of
we (which is V ) and H · dB (which is all space, V ′) are
fundamentally different. Similarly, in electric polarization,
the energy density, per unit volume, V , is generally dif-
ferent than E · dD. It follows that the common way of
expressing the internal energy density, per unit mass, in
the form,

du = Tds − Pdv +
n∑

i=1

ζidmi + H · d(B/ρ) + E · d(D/ρ)

(62)

is restrictive, in the sense that it does not hold in cases
where the field, due to the contents of the system, in V ,
does not vanish outside its boundaries, e.g., in V ′ − V .

As already shown (see discussion following Eq. (2)),
the proof is by integration over the mass (assumed to be
finite) of the system. As this integration does not include
all space, it cannot be generally correct. Note that, in
equation (62), mi, and ζi, stands for mass fraction, and
chemical potential of the ith species, u, s, and v, are inter-
nal energy, entropy, and volume, per unit mass, ρ is den-
sity, T is temperature and P is pressure. The observation
regarding the restrictive nature of equation (62), applies
also to the general case of nonuniform fields that extend
beyond the system boundaries. This can be realized by
considering each volume element, δV , as a subsystem sur-
rounded by a nonuniform field.

Equation (63) gives the general formulation of the in-
ternal energy per unit mass, û, as

dû = T̂ds − p̂dv +
n∑

i=1

ζ̂idmi

+
1
ρ
(H · dB + E · dD)

+
1

V ρ
d

[∫
V ′−V

∫ B

0

(H · dB + E · dD)δV

]
(63)

Fig. 1. Nonlinear adiabatic magnetization curves. The two
different curves, denoted by a1 and a2, indicate magnetization
under two different conditions (such as different temperatures).

where the set {T̂ , p̂, ζ̂} denotes [2,7] field dependent
temperature, pressure, and chemical potential, see equa-
tion (9).

Field energy work and heat. Figure 1 shows two non-
linear adiabatic magnetization curves, a1 and a2, and two
levels of fixed B, intersecting a1 at points 1 and 2, and a2

at points 3 and 4. The volume V and mass N are fixed
throughout. Assuming that fixed B implies that no work
is exchanged with the current sources, the horizontal sec-
tion 2 → 3 and 1 → 4 involve only heat flow, whereas
sections 1 → 2 and 3 → 4 involve adiabatic work. Equa-
tion (1) gives the work done in establishing the field, and
hence, its stored energy, provided that We is performed
at fixed S, V and N . Adiabatic (fixed S) magnetization
curves of a given material, at fixed volume and mass, are
not expected to intersect except at the (H = 0, B = 0)
origin. Consequently, each point that exists physically in
the BH plane lies on a single magnetization curve (at fixed
S, V , and N), and hence its field energy, UM , is unique.
Since, at H = B = 0, UM = 0, we have

We(0 → 2) + QM (2 → 3) + We(3 → 0) = 0 (64)
We(0 → 1) + QM (1 → 4) + We(4 → 0) = 0. (65)

Subtracting equation (65) from equation (64) gives

We(1 → 2) + QM (2 → 3) = QM (1 → 4) + We(4 → 3)
(66)

where QM denotes heat delivered and used to build up
the field, and use was made of the relations

W (i → j) = W (0 → j) − W (0 → i),
W (i → j) = −W (j → i), i, j = 1, 2 or 3, 4.

Any, physically existent, two points in the BH plane can
be connected by a combination of two segments compris-
ing adiabatic work and heat flow at fixed B. For example
see points 0 and 3, and 1 and 3. By virtue of equation (66),
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this proves the existence of a state function of a field en-
ergy, at every physical point of the BH plane, irrespective
of linearity or nonlinearity of the material being magne-
tized. The heat used to build the field up can be related
to changes in the adiabatic magnetization curves, at fixed
V , N and B, as follows. At point 3, see Figure 1, the field
energy UM3 is expressible in two alternative ways,

UM3 =

[∫
V ′

∫ B3

0

H · dBδV

]
a2

, adiabatic path a2 (67)

UM3 =

[∫
V ′

∫ B2

0

H · dBδV

]
a1

+ QM (2 → 3), (68)

adiabatic path a1 and then fixed B. Hence

QM = ∆

(∫
V ′

∫ B

0

H · dBδV

)
, fixed V, N,B (69)

where use was made of B = B2 = B3, the symbol 2 → 3
was dropped, and ∆ denotes the change in the adiabatic
magnetization work, e.g. due to the shift from a1 to a2.
Equation (69), being general in nature, facilitates eval-
uation of heat taken up or released by the field, using
predetermined data of adiabatic magnetization curves.

Appendix A: Application of the first law to Û,
U and UM

We postulate the existence of a magnetic internal energy
for a single component system of entropy S, volume V and
mass N , that is energized by a uniform induction field B
across V . It follows that the internal energy Û , of this
system is a function of the set {S, V, N,B}. The meaning
of S depends on constraints imposed on this set. If, by
definition, this set consists of four independent variables,
then S, being under this constraint independent of B,
stands for the nonmagnetic part of the entropy. Other-
wise, if S includes (in addition to the nonfield entropy)
the part arising exclusively due to the field, it must be
a function of B, contrary to the statement of its inde-
pendence. Thus, it is B that gives rise to an additional
field entropy, SM , and the total entropy, Ŝ, is obtained as
Ŝ = S + SM

Û = Û(S, V, N, B). (A.1)

Note that the selection of B, as the independent field vari-
able, conforms with the form of the differential magnetic
work term, as given by equation (2). The option to use
H or M instead of B exists in view of the constitutive
relations that relate these variables. For example, using
B = µH, with µ being defined as µ = µ(S, V, N,B), fa-
cilitates the replacement of the set S, V , N , B by S, V ,
N , H. However in doing so, the form and meaning of the
work term becomes more complicated, as the conditions of

fixed H allow energy transfer between the current sources
of the field and the system.

In the absence of the field, Û must reduce to the well-
known internal energy U that is a function of the set (S,
V , N),

Û(S, V, N, B = 0) = U(S, V, N). (A.2)

It follows that the energy difference arising from the pres-
ence of the field, Û(S, V, N, B)−U(S, V, N), is a function
of the set {S, V, N, B}. This energy difference is denoted
by UM = UM (S, V, N, B), and named “magnetic internal
energy” or in short “magnetic energy”

UM (S, V, N, B) = Û(S, V, N, B) − U(S, V, N). (A.3)

As both Û(S, V, N, B) and U(S, V, N) are state func-
tions, e.g. by the very definition of their being internal
energies in the presence and absence of the field, respec-
tively, UM (S, V, N, B) must also be a state function [2].
This agrees with the functional form of UM as given by
equation (19).

Rearranging equation (A.3) gives

Û = U + UM . (A.4)

Equation (A.4) shows that Û is the sum of two state func-
tions: U , the nonfield part that arises in the absence of
the field, and UM that is a consequence of its presence.
Furthermore, Û can be evaluated by first calculating U at
UM = 0, and then evaluating UM with U held fixed. In
terms of the set {S, V, N, B}, U is evaluated at B = 0
using the set {S, V, N}, and then holding this set fixed,
B is increased to its final level. Recalling that the initial
and final values of state functions are path independent,
other integration paths are equally valid.

The set {S, V, N, B} comprises four independent vari-
ables. Consequently, B must be independent of the subset
{S, V, N} and vice versa. This presentation, which im-
poses a variable field strength H, has the following advan-
tage. At fixed {S, V, N}, a change in B produces a change
in UM , but not in U . This specific change in UM guaran-
tees that the work done on the system by the sources that
give rise to B, at fixed {S, V, N}, is completely converted
into energy that is stored in the field. The definition of UM ,
as given by equation (A.3), does not specify where is the
field energy stored. However, equation (A.3) does require
that UM be associated with the contents of the system
that exist in V . This means that although the field and
its energy UM can exist on both sides of the boundaries
enclosing V , both must pertain to the contents of V . This
is a unique property of UM that does not apply to U .

By virtue of equation (A.4)

dÛ = dU + dUM . (A.5)

In equation (A.5) both Û and U are proper internal energy
functions in the presence and absence of the field, respec-
tively. Consequently, both must satisfy the first law as,

dÛ = dŴ + dQ̂, B > 0, (A.6)
dU = dW + dQ, B = 0. (A.7)
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Subtraction of equation (A.7) from equation (A.6) gives,

dÛ − dU = (dŴ − dW ) + (dQ̂ − dQ). (A.8)

Combining equations (A.5, A.8) gives,

dUM = dWM + dQM ,

dWM = dŴ − dW,

dQM = dQ̂ − dQ. (A.9)

The meaning of dWM and dQM is given by equations (10–
12), as the work and heat terms that effect the change
dUM . Equation (11) shows that dQM is a function of the
nonfield entropy S with TM replacing T , as the integrat-
ing factor. Equation (12) shows that dWM is a function
of the differentials of V , N , and B, as expressed by the
three terms on its right-hand-side. The first term relates
to mechanical pressure volume work, the second to mass
transfer work, and the third to magnetization work (at
fixed S, V , N).

Equations (A.6, A.7, A.9) show that the first law ap-
plies to Û , U and UM without exception. This result con-
forms with the uniqueness of field energy, which suggests
the existence of internal field energy, e.g., in the sense that
this field energy, although stored over all space, pertains
to the contents of the system. This is also the case with
the nonfield internal energy U , as it is stored, by its very
definition, within the system boundaries.

Appendix B: Mechanical and thermal coupling
of fixed mass polarizable systems

Electromechanical systems are used to transform electric
into mechanical work, and vice versa. This transformation
involves energy that is stored or delivered by, or to, elec-
tromagnetic fields. The work delivered by current sources
to an electromechanical system, of fixed mass, that is ther-
mally coupled to a heat source, can be expressed as,

dWe = dWmag + dWx + dWQ, fixed mass (B.1)

where W denotes work, and subscripts mag and x, and Q,
characterize the part converted into energy stored in mag-
netic field and mechanical work, and heat, delivered by the
field, respectively.

All four terms of equation (B.1) involve field interac-
tions. For example dWx and dWQ are mechanical work
and heat delivered by the field, and dWe is the work de-
livered to the field by the current sources. Equation (B.1)
can be expressed as follows,

idλ = dWmag + fdx − dQM (B.2)

where dQM denotes heat delivered to the field as per equa-
tion (11), idλ = dWe, fdx = dWx, −dQM = dWQ, and i,
λ, f , and x are: current, flux linked by i, force, and po-
sition of f , respectively. The work, dWe = idλ, delivered

(adiabatically, dQ = 0, at fixed x) by the current sources
to the field, is related to field variables as follows,

idλ =
∫

V ′
H · dBδV, fixed x,

adiabatic magnetization (dQ = 0) (B.3)

where H, B, δV and V ′ are magnetic field strength, mag-
netic induction, volume element, and volume occupied by
the field, respectively.

The energy, UM , stored in the field is a state function
so that dUM = dWmag must be satisfied. Hence, by virtue
of equation (B.2),

dUM = idλ − fdx + dQM (B.4)

where idλ−fdx and dQM are readily identified as the net
work and heat delivered to the field.

Equation (B.4) is the first law of thermodynamics that
is exclusively associated with the field. This equation cor-
roborates the fundamental concept that the internal en-
ergy can be split into nonfield and field parts, e.g. U
and UM , respectively. An alternative derivation of equa-
tion (B.4), using a two-step process follows. Initially the
system is at equilibrium. The first step (subscript 1) is
adiabatic at fixed x, so that

idλ = dUM1 , dx = dQM = 0 (B.5)

where dUM1 is the change in the energy stored in the field
in the first step.

In the second step (subscript 2), λ is kept fixed so that
no work is delivered by the current source, heat is allowed
to flow, and x is variable.

dUM2 = −fdx + dQM , fixed λ. (B.6)

Combining equations (B.5, B.6) gives equations (B.4).
Note that dUM = dUM1 + dUM2 is the total change

of energy stored in the field, idλ − fdx is the net work,
and dQM heat, delivered to the system in the two step
process. Combining equations (B.3, B.4) gives,

dUM =
∫

V ′
HdBδV − fdx + dQM . (B.7)

Note that when equation (B.7) is applied to the analy-
sis of field energy, work and heat, given in the section
following equation (63), no external mechanical work ex-
ists so that f = 0. In the adiabatic path (Eqs. (64, 65))
dQM = TMdS = 0, whereas at fixed B, the work term
vanishes and the only contribution to dUM is from dQM .
This agrees with the analysis of equations (64–69).

Appendix C: Derivation of equation (16)

Let µ(B) and µ(B = 0) be defined as the adiabatic value
of the permeability, which is obtained in a magnetiza-
tion process from 0 to B, at B and B = 0, respectively.
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If in adiabatic magnetization at fixed, S, V , N , µ is a de-
creasing monotonic function of B (e.g. via its dependence
on the temperature T̂ , as in paramagnetic materials), then
µ(B) < µ(B) < µ(B = 0), where B > B > 0 and B de-
notes an intermediate value between 0 and B. If µ is an
increasing monotonic function of B, as may be the case in
adiabatic magnetization of diamagnetic materials, then,
µ(B = 0) < µ(B) < µ(B).

Let the functional differences, d1 and d2, be defined as
follows:

d1 =
1
2
B2/µ(B) −

∫ B

0

H · dB
H = B/µ, fixed S, V, N (C.1)

d2 =
1
2
B2/µ(B = 0) −

∫ B

0

H · dB,

H = B/µ, fixed S, V, N. (C.2)

As the complete adiabatic integration path (involving
paramagnetic materials) is characterized by µ(B) ≤ µ ≤
µ(B = 0), d1 > 0 and d2 < 0 hold. Consequently, recall-
ing that µ is a monotonic function of B, there exists an
intermediate value B, between 0 and B, for which

1
2
B2/µ(B) −

∫ B

0

H · dB = 0,

so that

V

∫ B

0

H · dB =
1
2
V B2/µ(B) = UM .

This verifies equation (16).
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